Windows XP Windows 7 Windows 2003 Windows Vista Windows教程綜合 Linux 系統教程
Windows 10 Windows 8 Windows 2008 Windows NT Windows Server 電腦軟件教程
 Windows教程網 >> Linux系統教程 >> 關於Linux >> Linux進程的相關知識介紹

Linux進程的相關知識介紹

日期:2017/1/25 10:54:56      編輯:關於Linux

  對於Linux系統管理員來說,對Linux進程的相關知識需要有一定的了解,進程和線程很容易被混淆,只有充分了解了Linux進程才不會弄錯,下面小編就給大家詳細介紹下Linux進程吧。

  計算機實際上可以做的事情實質上非常簡單,比如計算兩個數的和,再比如在內存中尋找到某個地址等等。這些最基礎的計算機動作被稱為指令 (instruction)。所謂的程序(program),就是這樣一系列指令的所構成的集合。通過程序,我們可以讓計算機完成復雜的操作。程序大多數時候被存儲為可執行的文件。這樣一個可執行文件就像是一個菜譜,計算機可以按照菜譜作出可口的飯菜。

  那麼,程序和進程(process)的區別又是什麼呢?

  進程是程序的一個具體實現。只有食譜沒什麼用,我們總要按照食譜的指點真正一步步實行,才能做出菜肴。進程是執行程序的過程,類似於按照食譜,真正去做菜的過程。同一個程序可以執行多次,每次都可以在內存中開辟獨立的空間來裝載,從而產生多個進程。不同的進程還可以擁有各自獨立的IO接口。

  操作系統的一個重要功能就是為進程提供方便,比如說為進程分配內存空間,管理進程的相關信息等等,就好像是為我們准備好了一個精美的廚房。

  看一眼進程

  首先,我們可以使用$ps命令來查詢正在運行的進程,比如$ps -eo pid,comm,cmd,下圖為執行結果:

  (-e表示列出全部進程,-o pid,comm,cmd表示我們需要PID,COMMAND,CMD信息)

 Linux進程的相關知識介紹

  每一行代表了一個進程。每一行又分為三列。第一列PID(process IDentity)是一個整數,每一個進程都有一個唯一的PID來代表自己的身份,進程也可以根據PID來識別其他的進程。第二列COMMAND是這個進程的簡稱。第三列CMD是進程所對應的程序以及運行時所帶的參數。

  (第三列有一些由中括號[]括起來的。它們是kernel的一部分功能,被打扮成進程的樣子以方便操作系統管理。我們不必考慮它們。)

  我們看第一行,PID為1,名字為init。這個進程是執行/bin/init這一文件(程序)生成的。當Linux啟動的時候,init是系統創建的第一個進程,這一進程會一直存在,直到我們關閉計算機。這一進程有特殊的重要性,我們會不斷提到它。

  如何創建一個進程

  實際上,當計算機開機的時候,內核(kernel)只建立了一個init進程。Linux kernel並不提供直接建立新進程的系統調用。剩下的所有進程都是init進程通過fork機制建立的。新的進程要通過老的進程復制自身得到,這就是fork。fork是一個系統調用。進程存活於內存中。每個進程都在內存中分配有屬於自己的一片空間 (address space)。當進程fork的時候,Linux在內存中開辟出一片新的內存空間給新的進程,並將老的進程空間中的內容復制到新的空間中,此後兩個進程同時運行。

  老進程成為新進程的父進程(parent process),而相應的,新進程就是老的進程的子進程(child process)。一個進程除了有一個PID之外,還會有一個PPID(parent PID)來存儲的父進程PID。如果我們循著PPID不斷向上追溯的話,總會發現其源頭是init進程。所以說,所有的進程也構成一個以init為根的樹狀結構。

  如下,我們查詢當前shell下的進程:

  代碼如下:

  root@vamei:~# ps -o pid,ppid,cmd

  PID PPID CMD

  16935 3101 sudo -i

  16939 16935 -bash

  23774 16939 ps -o pid,ppid,cmd

  我們可以看到,第二個進程bash是第一個進程sudo的子進程,而第三個進程ps是第二個進程的子進程。

  還可以用$pstree命令來顯示整個進程樹:

  代碼如下:

  init─┬─NetworkManager─┬─dhclient

  │ └─2*[{NetworkManager}]

  ├─accounts-daemon───{accounts-daemon}

  ├─acpid

  ├─apache2─┬─apache2

  │ └─2*[apache2───26*[{apache2}]]

  ├─at-spi-bus-laun───2*[{at-spi-bus-laun}]

  ├─atd

  ├─avahi-daemon───avahi-daemon

  ├─bluetoothd

  ├─colord───2*[{colord}]

  ├─console-kit-dae───64*[{console-kit-dae}]

  ├─cron

  ├─cupsd───2*[dbus]

  ├─2*[dbus-daemon]

  ├─dbus-launch

  ├─dconf-service───2*[{dconf-service}]

  ├─dropbox───15*[{dropbox}]

  ├─firefox───27*[{firefox}]

  ├─gconfd-2

  ├─geoclue-master

  ├─6*[getty]

  ├─gnome-keyring-d───7*[{gnome-keyring-d}]

  ├─gnome-terminal─┬─bash

  │ ├─bash───pstree

  │ ├─gnome-pty-helpe

  │ ├─sh───R───{R}

  │ └─3*[{gnome-terminal}]

  fork通常作為一個函數被調用。這個函數會有兩次返回,將子進程的PID返回給父進程,0返回給子進程。實際上,子進程總可以查詢自己的PPID來知道自己的父進程是誰,這樣,一對父進程和子進程就可以隨時查詢對方。

  通常在調用fork函數之後,程序會設計一個if選擇結構。當PID等於0時,說明該進程為子進程,那麼讓它執行某些指令,比如說使用exec庫函數(library function)讀取另一個程序文件,並在當前的進程空間執行 (這實際上是我們使用fork的一大目的: 為某一程序創建進程);而當PID為一個正整數時,說明為父進程,則執行另外一些指令。由此,就可以在子進程建立之後,讓它執行與父進程不同的功能。

  子進程的終結(termination)

  當子進程終結時,它會通知父進程,並清空自己所占據的內存,並在kernel裡留下自己的退出信息(exit code,如果順利運行,為0;如果有錯誤或異常狀況,為》0的整數)。在這個信息裡,會解釋該進程為什麼退出。父進程在得知子進程終結時,有責任對該子進程使用wait系統調用。這個wait函數能從kernel中取出子進程的退出信息,並清空該信息在kernel中所占據的空間。但是,如果父進程早於子進程終結,子進程就會成為一個孤兒(orphand)進程。孤兒進程會被過繼給init進程,init進程也就成了該進程的父進程。init進程負責該子進程終結時調用wait函數。

  當然,一個糟糕的程序也完全可能造成子進程的退出信息滯留在kernel中的狀況(父進程不對子進程調用wait函數),這樣的情況下,子進程成為僵屍(zombie)進程。當大量僵屍進程積累時,內存空間會被擠占。

  進程與線程(thread)

  盡管在UNIX中,進程與線程是有聯系但不同的兩個東西,但在Linux中,線程只是一種特殊的進程。多個線程之間可以共享內存空間和IO接口。所以,進程是Linux程序的唯一的實現方式。

  總結

  程序,進程,PID,內存空間

  子進程,父進程,PPID,fork, wait

  上面就是Linux進程的相關知識介紹了,通過本文的閱讀,相信你對Linux進程有了更深入了了解,管理Linux進程也更加容易。

Copyright © Windows教程網 All Rights Reserved